Copied to
clipboard

G = C22.D28order 224 = 25·7

3rd non-split extension by C22 of D28 acting via D28/D14=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C22.4D28, C23.16D14, D14⋊C47C2, C4⋊Dic75C2, C22⋊C46D7, C2.8(C2×D28), (C2×C14).4D4, (C2×C4).9D14, C14.6(C2×D4), (C2×C28).3C22, C14.23(C4○D4), (C2×C14).27C23, (C22×Dic7)⋊2C2, C72(C22.D4), C2.10(D42D7), (C22×D7).5C22, C22.45(C22×D7), (C22×C14).16C22, (C2×Dic7).28C22, (C7×C22⋊C4)⋊4C2, (C2×C7⋊D4).5C2, SmallGroup(224,81)

Series: Derived Chief Lower central Upper central

C1C2×C14 — C22.D28
C1C7C14C2×C14C22×D7C2×C7⋊D4 — C22.D28
C7C2×C14 — C22.D28
C1C22C22⋊C4

Generators and relations for C22.D28
 G = < a,b,c,d | a2=b2=c28=1, d2=b, cac-1=ab=ba, ad=da, bc=cb, bd=db, dcd-1=bc-1 >

Subgroups: 326 in 78 conjugacy classes, 33 normal (15 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C7, C2×C4, C2×C4, D4, C23, C23, D7, C14, C14, C14, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C2×D4, Dic7, C28, D14, C2×C14, C2×C14, C2×C14, C22.D4, C2×Dic7, C2×Dic7, C2×Dic7, C7⋊D4, C2×C28, C22×D7, C22×C14, C4⋊Dic7, D14⋊C4, C7×C22⋊C4, C22×Dic7, C2×C7⋊D4, C22.D28
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C4○D4, D14, C22.D4, D28, C22×D7, C2×D28, D42D7, C22.D28

Smallest permutation representation of C22.D28
On 112 points
Generators in S112
(1 111)(2 71)(3 85)(4 73)(5 87)(6 75)(7 89)(8 77)(9 91)(10 79)(11 93)(12 81)(13 95)(14 83)(15 97)(16 57)(17 99)(18 59)(19 101)(20 61)(21 103)(22 63)(23 105)(24 65)(25 107)(26 67)(27 109)(28 69)(29 72)(30 86)(31 74)(32 88)(33 76)(34 90)(35 78)(36 92)(37 80)(38 94)(39 82)(40 96)(41 84)(42 98)(43 58)(44 100)(45 60)(46 102)(47 62)(48 104)(49 64)(50 106)(51 66)(52 108)(53 68)(54 110)(55 70)(56 112)
(1 55)(2 56)(3 29)(4 30)(5 31)(6 32)(7 33)(8 34)(9 35)(10 36)(11 37)(12 38)(13 39)(14 40)(15 41)(16 42)(17 43)(18 44)(19 45)(20 46)(21 47)(22 48)(23 49)(24 50)(25 51)(26 52)(27 53)(28 54)(57 98)(58 99)(59 100)(60 101)(61 102)(62 103)(63 104)(64 105)(65 106)(66 107)(67 108)(68 109)(69 110)(70 111)(71 112)(72 85)(73 86)(74 87)(75 88)(76 89)(77 90)(78 91)(79 92)(80 93)(81 94)(82 95)(83 96)(84 97)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 54 55 28)(2 27 56 53)(3 52 29 26)(4 25 30 51)(5 50 31 24)(6 23 32 49)(7 48 33 22)(8 21 34 47)(9 46 35 20)(10 19 36 45)(11 44 37 18)(12 17 38 43)(13 42 39 16)(14 15 40 41)(57 95 98 82)(58 81 99 94)(59 93 100 80)(60 79 101 92)(61 91 102 78)(62 77 103 90)(63 89 104 76)(64 75 105 88)(65 87 106 74)(66 73 107 86)(67 85 108 72)(68 71 109 112)(69 111 110 70)(83 97 96 84)

G:=sub<Sym(112)| (1,111)(2,71)(3,85)(4,73)(5,87)(6,75)(7,89)(8,77)(9,91)(10,79)(11,93)(12,81)(13,95)(14,83)(15,97)(16,57)(17,99)(18,59)(19,101)(20,61)(21,103)(22,63)(23,105)(24,65)(25,107)(26,67)(27,109)(28,69)(29,72)(30,86)(31,74)(32,88)(33,76)(34,90)(35,78)(36,92)(37,80)(38,94)(39,82)(40,96)(41,84)(42,98)(43,58)(44,100)(45,60)(46,102)(47,62)(48,104)(49,64)(50,106)(51,66)(52,108)(53,68)(54,110)(55,70)(56,112), (1,55)(2,56)(3,29)(4,30)(5,31)(6,32)(7,33)(8,34)(9,35)(10,36)(11,37)(12,38)(13,39)(14,40)(15,41)(16,42)(17,43)(18,44)(19,45)(20,46)(21,47)(22,48)(23,49)(24,50)(25,51)(26,52)(27,53)(28,54)(57,98)(58,99)(59,100)(60,101)(61,102)(62,103)(63,104)(64,105)(65,106)(66,107)(67,108)(68,109)(69,110)(70,111)(71,112)(72,85)(73,86)(74,87)(75,88)(76,89)(77,90)(78,91)(79,92)(80,93)(81,94)(82,95)(83,96)(84,97), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,54,55,28)(2,27,56,53)(3,52,29,26)(4,25,30,51)(5,50,31,24)(6,23,32,49)(7,48,33,22)(8,21,34,47)(9,46,35,20)(10,19,36,45)(11,44,37,18)(12,17,38,43)(13,42,39,16)(14,15,40,41)(57,95,98,82)(58,81,99,94)(59,93,100,80)(60,79,101,92)(61,91,102,78)(62,77,103,90)(63,89,104,76)(64,75,105,88)(65,87,106,74)(66,73,107,86)(67,85,108,72)(68,71,109,112)(69,111,110,70)(83,97,96,84)>;

G:=Group( (1,111)(2,71)(3,85)(4,73)(5,87)(6,75)(7,89)(8,77)(9,91)(10,79)(11,93)(12,81)(13,95)(14,83)(15,97)(16,57)(17,99)(18,59)(19,101)(20,61)(21,103)(22,63)(23,105)(24,65)(25,107)(26,67)(27,109)(28,69)(29,72)(30,86)(31,74)(32,88)(33,76)(34,90)(35,78)(36,92)(37,80)(38,94)(39,82)(40,96)(41,84)(42,98)(43,58)(44,100)(45,60)(46,102)(47,62)(48,104)(49,64)(50,106)(51,66)(52,108)(53,68)(54,110)(55,70)(56,112), (1,55)(2,56)(3,29)(4,30)(5,31)(6,32)(7,33)(8,34)(9,35)(10,36)(11,37)(12,38)(13,39)(14,40)(15,41)(16,42)(17,43)(18,44)(19,45)(20,46)(21,47)(22,48)(23,49)(24,50)(25,51)(26,52)(27,53)(28,54)(57,98)(58,99)(59,100)(60,101)(61,102)(62,103)(63,104)(64,105)(65,106)(66,107)(67,108)(68,109)(69,110)(70,111)(71,112)(72,85)(73,86)(74,87)(75,88)(76,89)(77,90)(78,91)(79,92)(80,93)(81,94)(82,95)(83,96)(84,97), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,54,55,28)(2,27,56,53)(3,52,29,26)(4,25,30,51)(5,50,31,24)(6,23,32,49)(7,48,33,22)(8,21,34,47)(9,46,35,20)(10,19,36,45)(11,44,37,18)(12,17,38,43)(13,42,39,16)(14,15,40,41)(57,95,98,82)(58,81,99,94)(59,93,100,80)(60,79,101,92)(61,91,102,78)(62,77,103,90)(63,89,104,76)(64,75,105,88)(65,87,106,74)(66,73,107,86)(67,85,108,72)(68,71,109,112)(69,111,110,70)(83,97,96,84) );

G=PermutationGroup([[(1,111),(2,71),(3,85),(4,73),(5,87),(6,75),(7,89),(8,77),(9,91),(10,79),(11,93),(12,81),(13,95),(14,83),(15,97),(16,57),(17,99),(18,59),(19,101),(20,61),(21,103),(22,63),(23,105),(24,65),(25,107),(26,67),(27,109),(28,69),(29,72),(30,86),(31,74),(32,88),(33,76),(34,90),(35,78),(36,92),(37,80),(38,94),(39,82),(40,96),(41,84),(42,98),(43,58),(44,100),(45,60),(46,102),(47,62),(48,104),(49,64),(50,106),(51,66),(52,108),(53,68),(54,110),(55,70),(56,112)], [(1,55),(2,56),(3,29),(4,30),(5,31),(6,32),(7,33),(8,34),(9,35),(10,36),(11,37),(12,38),(13,39),(14,40),(15,41),(16,42),(17,43),(18,44),(19,45),(20,46),(21,47),(22,48),(23,49),(24,50),(25,51),(26,52),(27,53),(28,54),(57,98),(58,99),(59,100),(60,101),(61,102),(62,103),(63,104),(64,105),(65,106),(66,107),(67,108),(68,109),(69,110),(70,111),(71,112),(72,85),(73,86),(74,87),(75,88),(76,89),(77,90),(78,91),(79,92),(80,93),(81,94),(82,95),(83,96),(84,97)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,54,55,28),(2,27,56,53),(3,52,29,26),(4,25,30,51),(5,50,31,24),(6,23,32,49),(7,48,33,22),(8,21,34,47),(9,46,35,20),(10,19,36,45),(11,44,37,18),(12,17,38,43),(13,42,39,16),(14,15,40,41),(57,95,98,82),(58,81,99,94),(59,93,100,80),(60,79,101,92),(61,91,102,78),(62,77,103,90),(63,89,104,76),(64,75,105,88),(65,87,106,74),(66,73,107,86),(67,85,108,72),(68,71,109,112),(69,111,110,70),(83,97,96,84)]])

C22.D28 is a maximal subgroup of
C23.5D28  C233D28  C24.31D14  C428D14  C42.92D14  C42.96D14  C42.102D14  D45D28  D46D28  C42.118D14  C24.56D14  C242D14  C24.33D14  C14.462+ 1+4  C14.1152+ 1+4  C14.472+ 1+4  C14.482+ 1+4  C22⋊Q825D7  C14.532+ 1+4  C14.772- 1+4  C14.572+ 1+4  C14.792- 1+4  D7×C22.D4  C14.822- 1+4  C14.1222+ 1+4  C14.662+ 1+4  C14.852- 1+4  C14.862- 1+4  C4220D14  C42.143D14  C42.144D14  C42.145D14  C42.161D14  C42.163D14  C42.164D14  C42.165D14
C22.D28 is a maximal quotient of
C4⋊Dic77C4  (C2×C28).28D4  C14.(C4⋊Q8)  C2.(C4×D28)  (C2×C4).21D28  (C2×C28).33D4  C23.34D28  C23.35D28  C23.10D28  C23.38D28  C22.D56  C23.13D28  C23.42D28  C24.47D14  C24.10D14  C23.45D28  C23.16D28

44 conjugacy classes

class 1 2A2B2C2D2E2F4A4B4C4D4E4F4G7A7B7C14A···14I14J···14O28A···28L
order1222222444444477714···1414···1428···28
size111122284414141414282222···24···44···4

44 irreducible representations

dim1111112222224
type+++++++++++-
imageC1C2C2C2C2C2D4D7C4○D4D14D14D28D42D7
kernelC22.D28C4⋊Dic7D14⋊C4C7×C22⋊C4C22×Dic7C2×C7⋊D4C2×C14C22⋊C4C14C2×C4C23C22C2
# reps12211123463126

Matrix representation of C22.D28 in GL4(𝔽29) generated by

1000
0100
001727
002812
,
1000
0100
00280
00028
,
202500
42100
001727
00012
,
9400
92000
00170
00017
G:=sub<GL(4,GF(29))| [1,0,0,0,0,1,0,0,0,0,17,28,0,0,27,12],[1,0,0,0,0,1,0,0,0,0,28,0,0,0,0,28],[20,4,0,0,25,21,0,0,0,0,17,0,0,0,27,12],[9,9,0,0,4,20,0,0,0,0,17,0,0,0,0,17] >;

C22.D28 in GAP, Magma, Sage, TeX

C_2^2.D_{28}
% in TeX

G:=Group("C2^2.D28");
// GroupNames label

G:=SmallGroup(224,81);
// by ID

G=gap.SmallGroup(224,81);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,217,218,188,122,6917]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^2=c^28=1,d^2=b,c*a*c^-1=a*b=b*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=b*c^-1>;
// generators/relations

׿
×
𝔽